Carnegie Mellon University

Computer Science Academy

CS1 course description

CMU CS Academy CS1 Introduction to Programming and Computer Science
Philosophy

Computer Science and computational problem solving are fundamental skills for engaging
the 21st-century marketplace of ideas and economies. We believe that all students should
have the opportunity to learn these skills as they will use them in whatever career they are
likely to enter.

This free CS1 curriculum is designed for students in 8th or 9th grade with algebra readiness
skills. No prior programming experience is required. It is inspired by a highly successful
Intro Computing course (15-112, Fundamentals of Programming and Computer Science)
that has been taught at Carnegie Mellon University for the past 10+ years. It is predicated
on the notion that learning about programming and computer science should be fun and
engaging. This requires interesting problems to solve, as computational problem-solving is
the core of computer science. It is why we choose to first expose students to graphical
problems in CS1: they are visually engaging, allow for multiple correct solutions, and
provide visual cues when a solution goes awry.

There are 12 Units to the course, the course is split up into two parts, CS1a (units 1-7) and
CS1b (units 8-12) so that it can be taught as a year long course or two semester based
courses. We believe the best way to learn this material is to do it, so each unit provides
content for the topic to be investigated, a worked problem(s) to illustrate and let students
explore the topic, a set of exercises to hone their mastery of the topic, some end-of-unit
exercises that require students to use and synthesize all the topics found in that Unit, and a
creative task that lets them further explores the topics in the Unit in a manner driven by
their interests.

The course provides its own browser-based Integrated Development Environment (IDE)
that the students will use to create and run their programs. It encompasses an editor and
compiler, a custom graphics package, and an autograder that is capable of grading not only
textual problems and solutions but also a broad range of graphics problems and solutions.

Document is subject to change. Last updated on 6/13/20



Carnegie Mellon University

Computer Science Academy

Standard Alignment
For state specific computer science education standard alignment visit here.
CSTA (Computer Science Teachers Association) Standards Aligned

3A-AP-139-10 Create prototypes that use algorithms to solve computational problems by
leveraging prior student knowledge and personal interests.
Algorithms & Programming Creating

3A-AP-149-10 Use lists to simplify solutions, generalizing computational problems instead
of repeatedly using simple variables.
Algorithms & Programming Abstraction

3A-AP-169-10 Design and iteratively develop computational artifacts for practical intent,
personal expression, or to address a societal issue by using events to initiate instructions.
Algorithms & Programming Creating

3A-AP-179-10 Decompose problems into smaller components through systematic analysis,
using constructs such as procedures, modules, and/or objects.
Algorithms & Programming Computational Problems

3A-AP-199-10 Systematically design and develop programs for broad audiences by
incorporating feedback from users.
Algorithms & Programming Creating

3A-AP-219-10 Evaluate and refine computational artifacts to make them more usable and
accessible.
Algorithms & Programming Testing

3A-AP-229-10 Design and develop computational artifacts working in team roles using
collaborative tools.
Algorithms & Programming Collaborating

3A-AP-239-10 Document design decisions using text, graphics, presentations, and/or

demonstrations in the development of complex programs.
Algorithms & Programming Communicating

Document is subject to change. Last updated on 6/13/20


https://drive.google.com/drive/folders/1Kush13KQalNAW7KPZq7l_84pxOU4omyX?usp=sharing
https://www.csteachers.org/page/standards

Carnegie Mellon University
Computer Science Academy

K-12 CS Framework Practices

Practice 1. Fostering an Inclusive Computing Culture

Building an inclusive and diverse computing culture requires strategies for incorporating
perspectives from people of different genders, ethnicities, and abilities. Incorporating these
perspectives involves understanding the personal, ethical, social, economic, and cultural
contexts in which people operate. Considering the needs of diverse users during the design
process is essential to producing inclusive computational products.

By the end of Grade 12, students should be able to:

e 1.Include the unique perspectives of others and reflect on one’s own perspectives
when designing and developing computational products.

Practice 2. Collaborating Around Computing

Collaborative computing is the process of performing a computational task by working in
pairs and on teams. Because it involves asking for the contributions and feedback of
others, effective collaboration can lead to better outcomes than working independently.
Collaboration requires individuals to navigate and incorporate diverse perspectives,
conflicting ideas, disparate skills, and distinct personalities. Students should use
collaborative tools to effectively work together and to create complex artifacts.

By the end of Grade 12, students should be able to:

e 1. Cultivate working relationships with individuals possessing diverse perspectives,
skills, and personalities

e 3. Solicit and incorporate feedback from, and provide constructive feedback to,
team members and other stakeholders.

Practice 5. Creating Computational Artifacts

The process of developing computational artifacts embraces both creative expression and
the exploration of ideas to create prototypes and solve computational problems. Students
create artifacts that are personally relevant or beneficial to their community and beyond.
Computational artifacts can be created by combining and modifying existing artifacts or by
developing new artifacts. Examples of computational artifacts include programs,
simulations, visualizations, digital animations, robotic systems, and apps.

By the end of Grade 12, students should be able to:

Document is subject to change. Last updated on 6/13/20


https://k12cs.org/framework-statements-by-grade-band/

Carnegie Mellon University
Computer Science Academy

e 1.Plan the development of a computational artifact using an iterative process that
includes reflection on and modification of the plan, taking into account key
features, time and resource constraints, and user expectations.

e 2. Create a computational artifact for practical intent, personal expression, or to
address a societal issue.

e 3. Modify an existing artifact to improve or customize it.
Practice 6. Testing and Refining Computational Artifacts

Testing and refinement is the deliberate and iterative process of improving a
computational artifact. This process includes debugging (identifying and fixing errors) and
comparing actual outcomes to intended outcomes. Students also respond to the changing
needs and expectations of end users and improve the performance, reliability, usability,
and accessibility of artifacts.

By the end of Grade 12, students should be able to:
e 2.ldentify and fix errors using a systematic process.

e 3. Evaluate and refine a computational artifact multiple times to enhance its
performance, reliability, usability, and accessibility.

Document is subject to change. Last updated on 6/13/20



Carnegie Mellon University
Computer Science Academy

ISTE Standards Alignment

ISTE Standards for Students
1. Empowered Learner

Students leverage technology to take an active role in choosing, achieving and
demonstrating competency in their learning goals, informed by the learning sciences.

Students:
A. articulate and set personal learning goals, develop strategies leveraging technology
to achieve them and reflect on the learning process itself to improve learning
outcomes.

B. build networks and customize their learning environments in ways that support the
learning process.

C. use technology to seek feedback that informs and improves their practice and to
demonstrate their learning in a variety of ways.

4. Innovative Designer

Students use a variety of technologies within a design process to identify and solve
problems by creating new, useful or imaginative solutions.

Students:
A. know and use a deliberate design process for generating ideas, testing theories,
creating innovative artifacts or solving authentic problems.

B. develop, test and refine prototypes as part of a cyclical design process.

C. exhibit a tolerance for ambiguity, perseverance and the capacity to work with
open-ended problems.

5. Computational Thinker
Students develop and employ strategies for understanding and solving problems in ways
that leverage the power of technological methods to develop and test solutions.

Students:

A. break problems into component parts, extract key information, and develop
descriptive models to understand complex systems or facilitate problem-solving.

Document is subject to change. Last updated on 6/13/20


https://www.iste.org/standards/for-students

Carnegie Mellon University

Computer Science Academy

6. Creative Communicator

Students communicate clearly and express themselves creatively for a variety of purposes
using the platforms, tools, styles, formats and digital media appropriate to their goals.

Students:

A. create original works or responsibly repurpose or remix digital resources into new
creations.

B. communicate complex ideas clearly and effectively by creating or using a variety of
digital objects such as visualizations, models or simulations.

C. publish or present content that customizes the message and medium for their
intended audiences.

Document is subject to change. Last updated on 6/13/20



